Create
a
PipeOpfrommlr_pipeopsfrom given IDa
PipeOpLearnerfrom aLearnerobjecta
PipeOpFilterfrom aFilterobjecta
PipeOpSelectfrom aSelectorobjecta clone of a
PipeOpfrom a givenPipeOp(possibly with changed settings)
The object is initialized with given parameters and param_vals.
po() taks a single obj (PipeOp id, Learner, ...) and converts
it to a PipeOp. pos() (with plural-s) takes either a character-vector, or a
list of objects, and creates a list of PipeOps.
Arguments
- .obj
[any]
The object from which to construct aPipeOp. If this is acharacter(1), it is looked up in themlr_pipeopsdictionary. Otherwise, it is converted to aPipeOp.- ...
any
Additional parameters to give to constructed object. This may be an argument of the constructor of thePipeOp, in which case it is given to this constructor; or it may be a parameter value, in which case it is given to theparam_valsargument of the constructor.- .objs
character|list
Either acharacterofPipeOps to look up inmlr_pipeops, or a list of other objects to be converted to aPipeOp. If this is a namedlist, then the names are used as$idslot for the resultingPipeOps.
Examples
library("mlr3")
po("learner", lrn("classif.rpart"), cp = 0.3)
#>
#> ── PipeOp <classif.rpart>: not trained ─────────────────────────────────────────
#> Values: cp=0.3, xval=0
#>
#> ── Input channels:
#> name train predict
#> <char> <char> <char>
#> input TaskClassif TaskClassif
#>
#> ── Output channels:
#> name train predict
#> <char> <char> <char>
#> output NULL PredictionClassif
po(lrn("classif.rpart"), cp = 0.3)
#>
#> ── PipeOp <classif.rpart>: not trained ─────────────────────────────────────────
#> Values: cp=0.3, xval=0
#>
#> ── Input channels:
#> name train predict
#> <char> <char> <char>
#> input TaskClassif TaskClassif
#>
#> ── Output channels:
#> name train predict
#> <char> <char> <char>
#> output NULL PredictionClassif
# is equivalent with:
mlr_pipeops$get("learner", lrn("classif.rpart"),
param_vals = list(cp = 0.3))
#>
#> ── PipeOp <classif.rpart>: not trained ─────────────────────────────────────────
#> Values: cp=0.3, xval=0
#>
#> ── Input channels:
#> name train predict
#> <char> <char> <char>
#> input TaskClassif TaskClassif
#>
#> ── Output channels:
#> name train predict
#> <char> <char> <char>
#> output NULL PredictionClassif
mlr3pipelines::pos(c("pca", original = "nop"))
#> $pca
#>
#> ── PipeOp <pca>: not trained ───────────────────────────────────────────────────
#> Values: list()
#>
#> ── Input channels:
#> name train predict
#> <char> <char> <char>
#> input Task Task
#>
#> ── Output channels:
#> name train predict
#> <char> <char> <char>
#> output Task Task
#>
#> $original
#>
#> ── PipeOp <original>: not trained ──────────────────────────────────────────────
#> Values: list()
#>
#> ── Input channels:
#> name train predict
#> <char> <char> <char>
#> input * *
#>
#> ── Output channels:
#> name train predict
#> <char> <char> <char>
#> output * *
#>
