Skip to contents

Applies a function to each row of a task. Use the affect_columns parameter inherited from PipeOpTaskPreprocSimple to limit the columns this function should be applied to.

Format

R6Class object inheriting from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Construction

PipeOpColApply$new(id = "rowapply", param_vals = list())

  • id :: character(1)
    Identifier of resulting object, default "rowapply".

  • param_vals :: named list
    List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Default list().

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreprocSimple.

The output is the input Task with the original affected columns replaced by the columns created by applying applicator to each row.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreprocSimple.

Parameters

The parameters are the parameters inherited from PipeOpTaskPreprocSimple, as well as:

  • applicator :: function
    Function to apply to each row in the affected columns of the task. The return value should be a vector of the same length for every input. Initialized as identity().

  • col_prefix :: character(1)
    If specified, prefix to be prepended to the column names of affected columns, separated by a dot (.). Initialized as "".

Internals

Calls apply on the data, using the value of applicator as FUN.

Fields

Only fields inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

Methods

Only methods inherited from PipeOpTaskPreprocSimple/PipeOpTaskPreproc/PipeOp.

See also

https://mlr-org.com/pipeops.html

Other PipeOps: PipeOp, PipeOpEnsemble, PipeOpImpute, PipeOpTargetTrafo, PipeOpTaskPreproc, PipeOpTaskPreprocSimple, mlr_pipeops, mlr_pipeops_adas, mlr_pipeops_blsmote, mlr_pipeops_boxcox, mlr_pipeops_branch, mlr_pipeops_chunk, mlr_pipeops_classbalancing, mlr_pipeops_classifavg, mlr_pipeops_classweights, mlr_pipeops_colapply, mlr_pipeops_collapsefactors, mlr_pipeops_colroles, mlr_pipeops_copy, mlr_pipeops_datefeatures, mlr_pipeops_encode, mlr_pipeops_encodeimpact, mlr_pipeops_encodelmer, mlr_pipeops_featureunion, mlr_pipeops_filter, mlr_pipeops_fixfactors, mlr_pipeops_histbin, mlr_pipeops_ica, mlr_pipeops_imputeconstant, mlr_pipeops_imputehist, mlr_pipeops_imputelearner, mlr_pipeops_imputemean, mlr_pipeops_imputemedian, mlr_pipeops_imputemode, mlr_pipeops_imputeoor, mlr_pipeops_imputesample, mlr_pipeops_kernelpca, mlr_pipeops_learner, mlr_pipeops_learner_pi_cvplus, mlr_pipeops_learner_quantiles, mlr_pipeops_missind, mlr_pipeops_modelmatrix, mlr_pipeops_multiplicityexply, mlr_pipeops_multiplicityimply, mlr_pipeops_mutate, mlr_pipeops_nearmiss, mlr_pipeops_nmf, mlr_pipeops_nop, mlr_pipeops_ovrsplit, mlr_pipeops_ovrunite, mlr_pipeops_pca, mlr_pipeops_proxy, mlr_pipeops_quantilebin, mlr_pipeops_randomprojection, mlr_pipeops_randomresponse, mlr_pipeops_regravg, mlr_pipeops_removeconstants, mlr_pipeops_renamecolumns, mlr_pipeops_replicate, mlr_pipeops_scale, mlr_pipeops_scalemaxabs, mlr_pipeops_scalerange, mlr_pipeops_select, mlr_pipeops_smote, mlr_pipeops_smotenc, mlr_pipeops_spatialsign, mlr_pipeops_subsample, mlr_pipeops_targetinvert, mlr_pipeops_targetmutate, mlr_pipeops_targettrafoscalerange, mlr_pipeops_textvectorizer, mlr_pipeops_threshold, mlr_pipeops_tomek, mlr_pipeops_tunethreshold, mlr_pipeops_unbranch, mlr_pipeops_updatetarget, mlr_pipeops_vtreat, mlr_pipeops_yeojohnson

Examples

library("mlr3")

task = tsk("iris")
pora = po("rowapply", applicator = scale)
pora$train(list(task))[[1]]  # rows are standardized
#> <TaskClassif:iris> (150 x 5): Iris Flowers
#> * Target: Species
#> * Properties: multiclass
#> * Features (4):
#>   - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width