Generates a more balanced data set by creating synthetic instances of the minority class using the ADASYN algorithm.
The algorithm generates for each minority instance new data points based on its K
nearest neighbors and the difficulty of learning for that data point.
It can only be applied to tasks with numeric features that have no missing values.
See smotefamily::ADAS
for details.
Format
R6Class
object inheriting from PipeOpTaskPreproc
/PipeOp
.
Construction
id
::character(1)
Identifier of resulting object, default"smote"
.param_vals
:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist()
.
Input and Output Channels
Input and output channels are inherited from PipeOpTaskPreproc
.
The output during training is the input Task
with added synthetic rows for the minority class.
The output during prediction is the unchanged input.
State
The $state
is a named list
with the $state
elements inherited from PipeOpTaskPreproc
.
Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc
, as well as:
K
::numeric(1)
The number of nearest neighbors used for sampling new values. Default is5
. SeeADAS()
.
Fields
Only fields inherited from PipeOpTaskPreproc
/PipeOp
.
Methods
Only methods inherited from PipeOpTaskPreproc
/PipeOp
.
References
He H, Bai Y, Garcia, A. E, Li S (2008). “ADASYN: Adaptive synthetic sampling approach for imbalanced learning.” In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1322-1328. doi:10.1109/IJCNN.2008.4633969 .
See also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_blsmote
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_learner_pi_cvplus
,
mlr_pipeops_learner_quantiles
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nearmiss
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_smotenc
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tomek
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Examples
library("mlr3")
# Create example task
data = data.frame(
target = factor(sample(c("c1", "c2"), size = 300, replace = TRUE, prob = c(0.1, 0.9))),
x1 = rnorm(300),
x2 = rnorm(300)
)
task = TaskClassif$new(id = "example", backend = data, target = "target")
task$head()
#> target x1 x2
#> <fctr> <num> <num>
#> 1: c2 -0.0834583 0.05489672
#> 2: c2 -0.7970822 -0.86258739
#> 3: c2 1.1015246 0.93077549
#> 4: c2 0.1084104 0.57117040
#> 5: c1 -1.1905068 1.23483193
#> 6: c2 0.2799213 0.46200313
table(task$data(cols = "target"))
#> target
#> c1 c2
#> 26 274
# Generate synthetic data for minority class
pop = po("adas")
adas_result = pop$train(list(task))[[1]]$data()
nrow(adas_result)
#> [1] 552
table(adas_result$target)
#>
#> c1 c2
#> 278 274