Splits numeric features into equally spaced bins.
See graphics::hist()
for details.
Values that fall out of the training data range during prediction are
binned with the lowest / highest bin respectively.
Format
R6Class
object inheriting from PipeOpTaskPreprocSimple
/PipeOpTaskPreproc
/PipeOp
.
Construction
id
::character(1)
Identifier of resulting object, default"histbin"
.param_vals
:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist()
.
Input and Output Channels
Input and output channels are inherited from PipeOpTaskPreproc
.
The output is the input Task
with all affected numeric features replaced by their binned versions.
State
The $state
is a named list
with the $state
elements inherited from PipeOpTaskPreproc
, as well as:
breaks
::list
List of intervals representing the bins for each numeric feature.
Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc
, as well as:
breaks
::character(1)
|numeric
|function
Either acharacter(1)
string naming an algorithm to compute the number of cells, anumeric(1)
giving the number of breaks for the histogram, a vectornumeric
giving the breakpoints between the histogram cells, or afunction
to compute the vector of breakpoints or to compute the number of cells. Default is algorithm"Sturges"
(seegrDevices::nclass.Sturges()
). For details seehist()
.
Internals
Uses the graphics::hist
function.
Methods
Only methods inherited from PipeOpTaskPreprocSimple
/PipeOpTaskPreproc
/PipeOp
.
See also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_adas
,
mlr_pipeops_blsmote
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_decode
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_learner_pi_cvplus
,
mlr_pipeops_learner_quantiles
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nearmiss
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_smotenc
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tomek
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Examples
library("mlr3")
task = tsk("iris")
pop = po("histbin")
task$data()
#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width
#> <fctr> <num> <num> <num> <num>
#> 1: setosa 1.4 0.2 5.1 3.5
#> 2: setosa 1.4 0.2 4.9 3.0
#> 3: setosa 1.3 0.2 4.7 3.2
#> 4: setosa 1.5 0.2 4.6 3.1
#> 5: setosa 1.4 0.2 5.0 3.6
#> ---
#> 146: virginica 5.2 2.3 6.7 3.0
#> 147: virginica 5.0 1.9 6.3 2.5
#> 148: virginica 5.2 2.0 6.5 3.0
#> 149: virginica 5.4 2.3 6.2 3.4
#> 150: virginica 5.1 1.8 5.9 3.0
pop$train(list(task))[[1]]$data()
#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width
#> <fctr> <ord> <ord> <ord> <ord>
#> 1: setosa [-Inf,1.5] [-Inf,0.2] (5,5.5] (3.4,3.6]
#> 2: setosa [-Inf,1.5] [-Inf,0.2] (4.5,5] (2.8,3]
#> 3: setosa [-Inf,1.5] [-Inf,0.2] (4.5,5] (3,3.2]
#> 4: setosa [-Inf,1.5] [-Inf,0.2] (4.5,5] (3,3.2]
#> 5: setosa [-Inf,1.5] [-Inf,0.2] (4.5,5] (3.4,3.6]
#> ---
#> 146: virginica (5,5.5] (2.2,2.4] (6.5,7] (2.8,3]
#> 147: virginica (4.5,5] (1.8,2] (6,6.5] (2.4,2.6]
#> 148: virginica (5,5.5] (1.8,2] (6,6.5] (2.8,3]
#> 149: virginica (5,5.5] (2.2,2.4] (6,6.5] (3.2,3.4]
#> 150: virginica (5,5.5] (1.6,1.8] (5.5,6] (2.8,3]
pop$state
#> $breaks
#> $breaks[[1]]
#> [1] -Inf 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Inf
#>
#> $breaks[[2]]
#> [1] -Inf 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Inf
#>
#> $breaks[[3]]
#> [1] -Inf 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Inf
#>
#> $breaks[[4]]
#> [1] -Inf 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 Inf
#>
#>
#> $dt_columns
#> [1] "Petal.Length" "Petal.Width" "Sepal.Length" "Sepal.Width"
#>
#> $affected_cols
#> [1] "Petal.Length" "Petal.Width" "Sepal.Length" "Sepal.Width"
#>
#> $intasklayout
#> Key: <id>
#> id type
#> <char> <char>
#> 1: Petal.Length numeric
#> 2: Petal.Width numeric
#> 3: Sepal.Length numeric
#> 4: Sepal.Width numeric
#>
#> $outtasklayout
#> Key: <id>
#> id type
#> <char> <char>
#> 1: Petal.Length ordered
#> 2: Petal.Width ordered
#> 3: Sepal.Length ordered
#> 4: Sepal.Width ordered
#>
#> $outtaskshell
#> Empty data.table (0 rows and 5 cols): Species,Petal.Length,Petal.Width,Sepal.Length,Sepal.Width
#>