Transform Columns by Constructing a Model Matrix
Source:R/PipeOpModelMatrix.R
mlr_pipeops_modelmatrix.Rd
Transforms columns using a given formula
using the stats::model.matrix()
function.
Format
R6Class
object inheriting from PipeOpTaskPreprocSimple
/PipeOpTaskPreproc
/PipeOp
.
Construction
id
::character(1)
Identifier of resulting object, default"modelmatrix"
.param_vals
:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist()
.
Input and Output Channels
Input and output channels are inherited from PipeOpTaskPreproc
.
The output is the input Task
with transformed columns according to the used formula
.
State
The $state
is a named list
with the $state
elements inherited from PipeOpTaskPreproc
.
Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc
, as well as:
formula
::formula
Formula to use. Higher order interactions can be created using constructs like~. ^ 2
. By default, an(Intercept)
column of all1
s is created, which can be avoided by adding0 +
to the term. Seemodel.matrix()
.
Internals
Uses the model.matrix()
function.
Methods
Only methods inherited from PipeOpTaskPreprocSimple
/PipeOpTaskPreproc
/PipeOp
.
See also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_missind
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Examples
library("mlr3")
task = tsk("iris")
pop = po("modelmatrix", formula = ~ . ^ 2)
task$data()
#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width
#> <fctr> <num> <num> <num> <num>
#> 1: setosa 1.4 0.2 5.1 3.5
#> 2: setosa 1.4 0.2 4.9 3.0
#> 3: setosa 1.3 0.2 4.7 3.2
#> 4: setosa 1.5 0.2 4.6 3.1
#> 5: setosa 1.4 0.2 5.0 3.6
#> ---
#> 146: virginica 5.2 2.3 6.7 3.0
#> 147: virginica 5.0 1.9 6.3 2.5
#> 148: virginica 5.2 2.0 6.5 3.0
#> 149: virginica 5.4 2.3 6.2 3.4
#> 150: virginica 5.1 1.8 5.9 3.0
pop$train(list(task))[[1]]$data()
#> Species (Intercept) Petal.Length Petal.Width Sepal.Length Sepal.Width
#> <fctr> <num> <num> <num> <num> <num>
#> 1: setosa 1 1.4 0.2 5.1 3.5
#> 2: setosa 1 1.4 0.2 4.9 3.0
#> 3: setosa 1 1.3 0.2 4.7 3.2
#> 4: setosa 1 1.5 0.2 4.6 3.1
#> 5: setosa 1 1.4 0.2 5.0 3.6
#> ---
#> 146: virginica 1 5.2 2.3 6.7 3.0
#> 147: virginica 1 5.0 1.9 6.3 2.5
#> 148: virginica 1 5.2 2.0 6.5 3.0
#> 149: virginica 1 5.4 2.3 6.2 3.4
#> 150: virginica 1 5.1 1.8 5.9 3.0
#> Petal.Length:Petal.Width Petal.Length:Sepal.Length
#> <num> <num>
#> 1: 0.28 7.14
#> 2: 0.28 6.86
#> 3: 0.26 6.11
#> 4: 0.30 6.90
#> 5: 0.28 7.00
#> ---
#> 146: 11.96 34.84
#> 147: 9.50 31.50
#> 148: 10.40 33.80
#> 149: 12.42 33.48
#> 150: 9.18 30.09
#> Petal.Length:Sepal.Width Petal.Width:Sepal.Length Petal.Width:Sepal.Width
#> <num> <num> <num>
#> 1: 4.90 1.02 0.70
#> 2: 4.20 0.98 0.60
#> 3: 4.16 0.94 0.64
#> 4: 4.65 0.92 0.62
#> 5: 5.04 1.00 0.72
#> ---
#> 146: 15.60 15.41 6.90
#> 147: 12.50 11.97 4.75
#> 148: 15.60 13.00 6.00
#> 149: 18.36 14.26 7.82
#> 150: 15.30 10.62 5.40
#> Sepal.Length:Sepal.Width
#> <num>
#> 1: 17.85
#> 2: 14.70
#> 3: 15.04
#> 4: 14.26
#> 5: 18.00
#> ---
#> 146: 20.10
#> 147: 15.75
#> 148: 19.50
#> 149: 21.08
#> 150: 17.70
pop$param_set$values$formula = ~ 0 + . ^ 2
pop$train(list(task))[[1]]$data()
#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width
#> <fctr> <num> <num> <num> <num>
#> 1: setosa 1.4 0.2 5.1 3.5
#> 2: setosa 1.4 0.2 4.9 3.0
#> 3: setosa 1.3 0.2 4.7 3.2
#> 4: setosa 1.5 0.2 4.6 3.1
#> 5: setosa 1.4 0.2 5.0 3.6
#> ---
#> 146: virginica 5.2 2.3 6.7 3.0
#> 147: virginica 5.0 1.9 6.3 2.5
#> 148: virginica 5.2 2.0 6.5 3.0
#> 149: virginica 5.4 2.3 6.2 3.4
#> 150: virginica 5.1 1.8 5.9 3.0
#> Petal.Length:Petal.Width Petal.Length:Sepal.Length
#> <num> <num>
#> 1: 0.28 7.14
#> 2: 0.28 6.86
#> 3: 0.26 6.11
#> 4: 0.30 6.90
#> 5: 0.28 7.00
#> ---
#> 146: 11.96 34.84
#> 147: 9.50 31.50
#> 148: 10.40 33.80
#> 149: 12.42 33.48
#> 150: 9.18 30.09
#> Petal.Length:Sepal.Width Petal.Width:Sepal.Length Petal.Width:Sepal.Width
#> <num> <num> <num>
#> 1: 4.90 1.02 0.70
#> 2: 4.20 0.98 0.60
#> 3: 4.16 0.94 0.64
#> 4: 4.65 0.92 0.62
#> 5: 5.04 1.00 0.72
#> ---
#> 146: 15.60 15.41 6.90
#> 147: 12.50 11.97 4.75
#> 148: 15.60 13.00 6.00
#> 149: 18.36 14.26 7.82
#> 150: 15.30 10.62 5.40
#> Sepal.Length:Sepal.Width
#> <num>
#> 1: 17.85
#> 2: 14.70
#> 3: 15.04
#> 4: 14.26
#> 5: 18.00
#> ---
#> 146: 20.10
#> 147: 15.75
#> 148: 19.50
#> 149: 21.08
#> 150: 17.70