Extracts principle components from data. Only affects numerical features.
See stats::prcomp()
for details.
Format
R6Class
object inheriting from PipeOpTaskPreproc
/PipeOp
.
Construction
id
::character(1)
Identifier of resulting object, default"pca"
.param_vals
:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist()
.
Input and Output Channels
Input and output channels are inherited from PipeOpTaskPreproc
.
The output is the input Task
with all affected numeric features replaced by their principal components.
State
The $state
is a named list
with the $state
elements inherited from PipeOpTaskPreproc
, as well as the elements of the class stats::prcomp,
with the exception of the $x
slot. These are in particular:
sdev
::numeric
The standard deviations of the principal components.rotation
::matrix
The matrix of variable loadings.center
::numeric
|logical(1)
The centering used, orFALSE
.scale
::numeric
|logical(1)
The scaling used, orFALSE
.
Parameters
The parameters are the parameters inherited from PipeOpTaskPreproc
, as well as:
center
::logical(1)
Indicating whether the features should be centered. Default isTRUE
. Seeprcomp()
.scale.
::logical(1)
Whether to scale features to unit variance before analysis. Default isFALSE
, but scaling is advisable. Seeprcomp()
.rank.
::integer(1)
Maximal number of principal components to be used. Default isNULL
: use all components. Seeprcomp()
.
Internals
Uses the prcomp()
function.
Methods
Only methods inherited from PipeOpTaskPreproc
/PipeOp
.
See also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_replicate
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Examples
library("mlr3")
task = tsk("iris")
pop = po("pca")
task$data()
#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width
#> <fctr> <num> <num> <num> <num>
#> 1: setosa 1.4 0.2 5.1 3.5
#> 2: setosa 1.4 0.2 4.9 3.0
#> 3: setosa 1.3 0.2 4.7 3.2
#> 4: setosa 1.5 0.2 4.6 3.1
#> 5: setosa 1.4 0.2 5.0 3.6
#> ---
#> 146: virginica 5.2 2.3 6.7 3.0
#> 147: virginica 5.0 1.9 6.3 2.5
#> 148: virginica 5.2 2.0 6.5 3.0
#> 149: virginica 5.4 2.3 6.2 3.4
#> 150: virginica 5.1 1.8 5.9 3.0
pop$train(list(task))[[1]]$data()
#> Species PC1 PC2 PC3 PC4
#> <fctr> <num> <num> <num> <num>
#> 1: setosa -2.684126 -0.31939725 0.02791483 -0.002262437
#> 2: setosa -2.714142 0.17700123 0.21046427 -0.099026550
#> 3: setosa -2.888991 0.14494943 -0.01790026 -0.019968390
#> 4: setosa -2.745343 0.31829898 -0.03155937 0.075575817
#> 5: setosa -2.728717 -0.32675451 -0.09007924 0.061258593
#> ---
#> 146: virginica 1.944110 -0.18753230 -0.17782509 -0.426195940
#> 147: virginica 1.527167 0.37531698 0.12189817 -0.254367442
#> 148: virginica 1.764346 -0.07885885 -0.13048163 -0.137001274
#> 149: virginica 1.900942 -0.11662796 -0.72325156 -0.044595305
#> 150: virginica 1.390189 0.28266094 -0.36290965 0.155038628
pop$state
#> Standard deviations (1, .., p=4):
#> [1] 2.0562689 0.4926162 0.2796596 0.1543862
#>
#> Rotation (n x k) = (4 x 4):
#> PC1 PC2 PC3 PC4
#> Petal.Length 0.85667061 0.17337266 -0.07623608 0.4798390
#> Petal.Width 0.35828920 0.07548102 -0.54583143 -0.7536574
#> Sepal.Length 0.36138659 -0.65658877 0.58202985 -0.3154872
#> Sepal.Width -0.08452251 -0.73016143 -0.59791083 0.3197231