Replicate the input as a Multiplicity
, causing subsequent PipeOp
s to be executed multiple
reps
times.
Note that Multiplicity
is currently an experimental features and the implementation or UI
may change.
Construction
id
::character(1)
Identifier of the resulting object, default"replicate"
.param_vals
:: namedlist
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction. Defaultlist()
.
Input and Output Channels
PipeOpReplicate
has one input channel named "input"
, taking any input ("*"
) both during training and prediction.
PipeOpReplicate
has one output channel named "output"
returning the replicated input as a
Multiplicity
of type any ("[*]"
) both during training and prediction.
State
The $state
is left empty (list()
).
Parameters
reps
::numeric(1)
Integer indicating the number of times the input should be replicated.
Fields
Only fields inherited from PipeOp
.
Methods
Only methods inherited from PipeOp
.
See also
https://mlr-org.com/pipeops.html
Other PipeOps:
PipeOp
,
PipeOpEnsemble
,
PipeOpImpute
,
PipeOpTargetTrafo
,
PipeOpTaskPreproc
,
PipeOpTaskPreprocSimple
,
mlr_pipeops
,
mlr_pipeops_adas
,
mlr_pipeops_blsmote
,
mlr_pipeops_boxcox
,
mlr_pipeops_branch
,
mlr_pipeops_chunk
,
mlr_pipeops_classbalancing
,
mlr_pipeops_classifavg
,
mlr_pipeops_classweights
,
mlr_pipeops_colapply
,
mlr_pipeops_collapsefactors
,
mlr_pipeops_colroles
,
mlr_pipeops_copy
,
mlr_pipeops_datefeatures
,
mlr_pipeops_decode
,
mlr_pipeops_encode
,
mlr_pipeops_encodeimpact
,
mlr_pipeops_encodelmer
,
mlr_pipeops_featureunion
,
mlr_pipeops_filter
,
mlr_pipeops_fixfactors
,
mlr_pipeops_histbin
,
mlr_pipeops_ica
,
mlr_pipeops_imputeconstant
,
mlr_pipeops_imputehist
,
mlr_pipeops_imputelearner
,
mlr_pipeops_imputemean
,
mlr_pipeops_imputemedian
,
mlr_pipeops_imputemode
,
mlr_pipeops_imputeoor
,
mlr_pipeops_imputesample
,
mlr_pipeops_kernelpca
,
mlr_pipeops_learner
,
mlr_pipeops_learner_pi_cvplus
,
mlr_pipeops_learner_quantiles
,
mlr_pipeops_missind
,
mlr_pipeops_modelmatrix
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_mutate
,
mlr_pipeops_nearmiss
,
mlr_pipeops_nmf
,
mlr_pipeops_nop
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_pca
,
mlr_pipeops_proxy
,
mlr_pipeops_quantilebin
,
mlr_pipeops_randomprojection
,
mlr_pipeops_randomresponse
,
mlr_pipeops_regravg
,
mlr_pipeops_removeconstants
,
mlr_pipeops_renamecolumns
,
mlr_pipeops_rowapply
,
mlr_pipeops_scale
,
mlr_pipeops_scalemaxabs
,
mlr_pipeops_scalerange
,
mlr_pipeops_select
,
mlr_pipeops_smote
,
mlr_pipeops_smotenc
,
mlr_pipeops_spatialsign
,
mlr_pipeops_subsample
,
mlr_pipeops_targetinvert
,
mlr_pipeops_targetmutate
,
mlr_pipeops_targettrafoscalerange
,
mlr_pipeops_textvectorizer
,
mlr_pipeops_threshold
,
mlr_pipeops_tomek
,
mlr_pipeops_tunethreshold
,
mlr_pipeops_unbranch
,
mlr_pipeops_updatetarget
,
mlr_pipeops_vtreat
,
mlr_pipeops_yeojohnson
Other Multiplicity PipeOps:
Multiplicity()
,
PipeOpEnsemble
,
mlr_pipeops_classifavg
,
mlr_pipeops_featureunion
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
,
mlr_pipeops_regravg
Other Experimental Features:
Multiplicity()
,
mlr_pipeops_multiplicityexply
,
mlr_pipeops_multiplicityimply
,
mlr_pipeops_ovrsplit
,
mlr_pipeops_ovrunite
Examples
library("mlr3")
task = tsk("iris")
po = po("replicate", param_vals = list(reps = 3))
po$train(list(task))
#> $output
#> Multiplicity:
#> [[1]]
#> <TaskClassif:iris> (150 x 5): Iris Flowers
#> * Target: Species
#> * Properties: multiclass
#> * Features (4):
#> - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
#>
#> [[2]]
#> <TaskClassif:iris> (150 x 5): Iris Flowers
#> * Target: Species
#> * Properties: multiclass
#> * Features (4):
#> - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
#>
#> [[3]]
#> <TaskClassif:iris> (150 x 5): Iris Flowers
#> * Target: Species
#> * Properties: multiclass
#> * Features (4):
#> - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
#>
#>
po$predict(list(task))
#> $output
#> Multiplicity:
#> [[1]]
#> <TaskClassif:iris> (150 x 5): Iris Flowers
#> * Target: Species
#> * Properties: multiclass
#> * Features (4):
#> - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
#>
#> [[2]]
#> <TaskClassif:iris> (150 x 5): Iris Flowers
#> * Target: Species
#> * Properties: multiclass
#> * Features (4):
#> - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
#>
#> [[3]]
#> <TaskClassif:iris> (150 x 5): Iris Flowers
#> * Target: Species
#> * Properties: multiclass
#> * Features (4):
#> - dbl (4): Petal.Length, Petal.Width, Sepal.Length, Sepal.Width
#>
#>